Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 41

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Structure, stability, and actinide leaching of simulated nuclear fuel debris synthesized from UO$$_{2}$$, Zr, and stainless-steel

Kirishima, Akira*; Akiyama, Daisuke*; Kumagai, Yuta; Kusaka, Ryoji; Nakada, Masami; Watanabe, Masayuki; Sasaki, Takayuki*; Sato, Nobuaki*

Journal of Nuclear Materials, 567, p.153842_1 - 153842_15, 2022/08

 Times Cited Count:5 Percentile:76.47(Materials Science, Multidisciplinary)

To understand the chemical structure and stability of nuclear fuel debris consisting of UO$$_{2}$$, Zr, and Stainless Steel (SUS) generated by the Fukushima Daiichi Nuclear Power Plant accident in Japan in 2011, simulated debris of the UO$$_{2}$$-SUS-Zr system and other fundamental component systems were synthesized and characterized. The simulated debris were synthesized by heat treatment for 1 to 12 h at 1600$$^{circ}$$C, in inert (Ar) or oxidative (Ar + 2% O$$_{2}$$) atmospheres. $$^{237}$$Np and $$^{241}$$Am tracers were doped for the leaching tests of these elements and U from the simulated debris. The characterization of the simulated debris was conducted by XRD, SEM-EDX, Raman spectroscopy, and M$"o$ssbauer spectroscopy, which provided the major uranium phase of the UO $$_{2}$$-SUS-Zr debris was the solid solution of U$$^{mathrm{IV}}$$O$$_{2}$$ (s.s.) with Zr(IV) and Fe(II) regardless of the treatment atmosphere. The long-term immersion test of the simulated debris in pure water and that in seawater revealed the macro scale crystal structure of the simulated debris was chemically very stable in the wet condition for a year or more. Furthermore, the leaching test results showed that the actinide leaching ratios of U, Np, Am from the UO$$_{2}$$-SUS-Zr debris were very limited and less than 0.08 % for all the experiments in this study.

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-010, 155 Pages, 2022/06

JAEA-Review-2022-010.pdf:9.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying ...

Journal Articles

3D FEM soil-structure interaction analysis for Kashiwazaki-Kariwa Nuclear Power Plant considering soil separation and sliding

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Moritani, Hiroshi*; Choi, B.; Nishida, Akemi

Frontiers in Built Environment (Internet), 7, p.676408_1 - 676408_14, 2021/06

The objective of this study is the improvement of response evaluations of structures, facilities and equipment in evaluation of three-dimensional seismic behavior of nuclear power plant facilities, by three-dimensional finite element method model, including separation and sliding between the soil and the basement walls. To achieve this, simulation analyses of Kashiwazaki Kariwa nuclear power plant unit 7 reactor building under the 2007 Niigataken-chuetsu-oki earthquake event were carried out. These simulation analyses consider soil-structure interaction using a three-dimensional finite element method model in which the soil and building are three-dimensionally modeled by the finite element method. It is found that basemat uplift is generated on east side of the basemat edge, and this has an important influence on the results. The importance is evidenced by the difference of local response in soil pressure characteristics beneath the edge of basemat, the soil pressure characteristics along the east side of basement wall and the maximum acceleration response at the west end of the embedded surface. Although, in this particular study, basemat uplift, separation and sliding have only a relatively small influence on the maximum acceleration response of embedded surface and the soil pressure characteristics along the basement walls and beneath the basemat, under strong earthquake motion, these influences can be significant, therefore appropriate evaluation of this effect should be considered.

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-043, 116 Pages, 2021/01

JAEA-Review-2020-043.pdf:7.74MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted in FY2019. In this study, a technique to effectively suppress the scattering of fine particles has been developed, and as a result of experiments, a method of spraying with water mist was found to be an effective and applicable method for improving aerosol removal efficiency and removal rate. As a method of solidifying fuel debris to suppress fine particle scattering during cutting, geopolymer was evaluated for its strength, thermal conductivity and cutting powder. In addition, flow status of geopolymer and the temperature distribution inside RPV covered by geopolymer were simulated.

Journal Articles

Overview and outcomes of the OECD/NEA benchmark study of the accident at the Fukushima Daiichi NPS (BSAF), Phase 2; Results of severe accident analyses for Unit 2

Sonnenkalb, M.*; Pellegrini, M.*; Herranz, L. E.*; Lind, T.*; Morreale, A. C.*; Kanda, Kenichi*; Tamaki, Hitoshi; Kim, S. I.*; Cousin, F.*; Fernandez Moguel, L.*; et al.

Nuclear Engineering and Design, 369, p.110840_1 - 110840_10, 2020/12

 Times Cited Count:22 Percentile:94.98(Nuclear Science & Technology)

This is the second paper in a series of 3 in which results of severe accident analyses for Unit 2 of Fukushima Daiichi are presented, gained in Phase 2 of the OECD/NEA project "Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Plant (BSAF)". Nine organizations of six countries submitted results of their calculated severe accident scenarios for Unit 2 of Fukushima Daiichi using different severe accident codes. The present paper describes the findings of the comparison of the participants' results for Unit 2 against each other and against plant data, the evaluation of the accident progression and the final status inside the reactors. Special focus is on reactor pressure vessel status, melt release and fission product behavior and release. Unit 2 specific aspects will be highlighted and points of consensus as well as remaining uncertainties and data needs will be summarized.

Journal Articles

$$f$$-electron states of NpPd$$_5$$Al$$_2$$ and the isostructural family; Heavy fermion superconductivity accompanied by valence crossover

Metoki, Naoto

Kotai Butsuri, 55(7), p.285 - 296, 2020/07

Electron states are the main theme of "solid-state physics", which is essential for microscopic understanding of multipoles and superconductivity, etc. Rare earths (4$$f$$) and actinides (5$$f$$) provide variety of interesting states realized with competing interactions between the increasing number of $$f$$ electrons. Since crystal field splitting of many-body $$f$$ electron system is smaller than the bandwidth, (1) high resolution experiments are needed, (2) essentially no clear spectrum with well defined peaks is expected in itinerant Ce and U compounds, and (3) Np and Pu is strictly regulated. Therefore, systematic research on magnetic excitations by neutron scattering experiments of localized compounds and rare earth iso-structural reference is useful. We describe the $$f$$ electron states of heavy electron compounds NpPd$$ _5$$Al$$_2$$ and actinide and rare earth based iso-structural family.

JAEA Reports

Development of technology to prevent scattering of radioactive materials in fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-037, 90 Pages, 2020/03

JAEA-Review-2019-037.pdf:7.0MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Prevent Scattering of Radioactive Materials in Fuel Debris Retrieval". The objective of the present study is to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles at the time of debris retrieval in Fukushima Daiichi Nuclear Power Station. In addition, as measures to prevent scattering, we will evaluate and develop methods by experiments and simulation as to; (1) a method to suppress the scattering with minimum amount of water utilizing water spray etc., and (2) a method to suppress the scattering by solidifying fuel debris.

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2019-035, 61 Pages, 2020/03

JAEA-Review-2019-035.pdf:2.9MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase". In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.

Journal Articles

Pseudo-triplet 5$$f$$ electron state in the heavy fermion superconductor NpPd$$_5$$Al$$_2$$

Metoki, Naoto; Aoki, Dai*; Griveau, J.-C.*; Otsuki, Junya*

Journal of the Physical Society of Japan, 89(2), p.024707_1 - 024707_6, 2020/02

 Times Cited Count:3 Percentile:30.58(Physics, Multidisciplinary)

The pseudo triplet ground state in the heavy-fermion superconductor NpPd$$_5$$Al$$_2$$ was concluded. The magnetic susceptibility $$chi$$ can be reproduced by the singlet ground state $$Gamma_{t1}$$ with the main component of $$|0rangle$$ and the first excited doublet $$Gamma_{t5}$$ dominated by $$|pm1rangle$$ at $$Delta E=49$$,K. The magnetization curve can be explained from the effective local hamiltonian for pseudo spin $$J$$=1 with $$DJ_z^2$$($$D=Delta E$$) equivalent to the quadrupole operator $$O_{20}$$. The specific heat can be described with the Kondo model normalized to give the entropy R$$ln3$$, corresponding to the pseudo triplet state. The derived Kondo temperature $$T_{rm K}=55$$,K comparable to the level splitting $$Delta E=49$$,K indicates the contribution of the excited doublet $$Gamma_{t5}$$ to the possible multi-channel Kondo effect.

Journal Articles

$$f$$-electron states of heavy-fermion superconductor NpPd$$_5$$Al$$_2$$ and rare-earth- and actinide-based isostructural compounds

Metoki, Naoto

Journal of the Physical Society of Japan, 89(2), p.025001_1 - 025001_2, 2020/02

 Times Cited Count:1 Percentile:11.81(Physics, Multidisciplinary)

Good correspondence of the $$LS$$ and $$j$$-$$j$$ coupling scheme can be realized in the $$f$$-electron states of the heavy-fermion superconductor NpPd$$_5$$Al$$_2$$ and the isostructural family. The rare-earth and actinide elements are under a common strong uniaxial point charge potential with tetragonal point symmetry $$D_{4h}$$. The systematic development of the $$f$$-electron states can be understood in the $$LS$$ coupling scheme of $$^nf$$ configuration (the number of $$f$$ electrons $$nleq6$$). We can find the corresponding states in $$j$$-$$j$$ coupling scheme with three $$f$$-orbitals $$Gamma_7^{rm; i}, Gamma_7^{rm; ii}$$, and $$Gamma_6$$ determined from CePd$$_5$$Al$$_2$$ with $$^1f$$ configuration.

Journal Articles

Evaluation of the effects of differences in building models on the seismic response of a nuclear power plant structure

Choi, B.; Nishida, Akemi; Muramatsu, Ken*; Takada, Tsuyoshi*

Nihon Jishin Kogakkai Rombunshu (Internet), 20(2), p.2_1 - 2_16, 2020/02

AA2018-0122.pdf:2.15MB

no abstracts in English

Journal Articles

External dose evaluation based on detailed air dose rate measurements in living environments

Sato, Tetsuro*; Ando, Masaki; Sato, Masako*; Saito, Kimiaki

Journal of Environmental Radioactivity, 210, p.105973_1 - 105973_7, 2019/12

 Times Cited Count:9 Percentile:35.81(Environmental Sciences)

A method was devised for estimation of external doses of Fukushima residents expected to return to their homes after evacuation orders are lifted. 211 residents expected to return to six towns and villages were surveyed in FY 2014, FY 2015, and FY2016. Interviewing returning residents about their expected life patterns after returning, air dose rate were measured along the reported personal trails representing their patterns of movement in daily life. Excluding 15 residents from whose homes we were unable to take air dose rate measurements, the maximum external effective dose and the average external effective dose were estimated respectively as 4.9 mSv/y and 0.86 mSv/y. Although the mean values and dispersion of external effective doses differ depending on the evacuation level, for 93.3% of all residents, the estimated external effective doses were less than 2 mSv/y. The average exposure dose at home accounts for 66.8% of the annual exposure dose.

Journal Articles

Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident

Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Yoshida, Tadayoshi; Sato, Tetsuro*; Seki, Akiyuki; Yamamoto, Hideaki*; et al.

Journal of Environmental Radioactivity, 210, p.105878_1 - 105878_12, 2019/12

 Times Cited Count:33 Percentile:80.86(Environmental Sciences)

Journal Articles

Localized 5$$f^2$$ states in UPd$$_5$$Al$$_2$$ and valence crossover in the Vicinity of Heavy-Fermion superconductivity

Metoki, Naoto; Haga, Yoshinori; Yamamoto, Etsuji; Matsuda, Masaaki*

Journal of the Physical Society of Japan, 87(11), p.114712_1 - 114712_9, 2018/11

 Times Cited Count:3 Percentile:29(Physics, Multidisciplinary)

The localized 5$$f$$ states with 5$$f^2$$ ($$^3H_4$$) configuration of U$$^{4+}$$ ion have been revealed in UPd$$_5$$Al$$_2$$. We found that the low-lying states are the same as PrPd$$_5$$Al$$_2$$ flat orbitals with large $$J_z$$ are stabilized by a two-dimensional CEF potential in the unique crystal structure. The present study involves the valence crossover from tetravalent to trivalent in a series of AnPd$$_5$$Al$$_2$$, demonstrated by lattice and/or transport anomaly as well as many body effects in the vicinity of the boundary. The valence instability plays important role for the unusual heavy fermion superconductivity in NpPd$$_5$$Al$$_2$$.

Journal Articles

$$f$$-electron states in PrPd$$_5$$Al$$_2$$

Metoki, Naoto; Yamauchi, Hiroki; Suzuki, Hiroyuki*; Kitazawa, Hideaki*; Hagihara, Masato*; Masuda, Takatsugu*; Aczel, A. A.*; Chi, S.*; Hong, T.*; Matsuda, Masaaki*; et al.

Journal of the Physical Society of Japan, 87(9), p.094704_1 - 094704_8, 2018/09

 Times Cited Count:6 Percentile:46.22(Physics, Multidisciplinary)

The $$f$$-electron states of PrPd$$_5$$Al$$_2$$ were revealed by neutron inelastic scattering. The flat $$f$$-orbitals with large $$J_z$$ become stable under the two-dimensional CEF potential of unique crystal structure, which is the origin of the Ising anisotropy. A systematic understanding is possible in RPd$$_5$$Al$$_2$$ based on this CEF potential. Especially the $$XY$$-type anisotropy in NpPd$$_5$$Al$$_2$$ can be qualitatively understood with the positive Stevens factors. It mean that the local property is important for the physical properties of RPd$$_5$$Al$$_2$$ including the heavy fermion superconductivity in NpPd$$_5$$Al$$_2$$.

Journal Articles

Neutron inelastic scattering study of the $$f$$-electron states in NdPd$$_5$$Al$$_2$$

Metoki, Naoto; Yamauchi, Hiroki; Suzuki, Hiroyuki*; Kitazawa, Hideaki*; Kamazawa, Kazuya*; Ikeuchi, Kazuhiko*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro

Journal of the Physical Society of Japan, 87(8), p.084708_1 - 084708_7, 2018/08

 Times Cited Count:6 Percentile:46.22(Physics, Multidisciplinary)

Inelastic neutron scattering experiments were carried out in order to study the $$f$$-electron states of NdPd$$_5$$Al$$_2$$The CEF levels at 0K, 35.4K, 88.3K, 101.5K, and 198.8K were clarified from the excitation spectra. The $$Gamma_6$$ ground state contains the orbital with $$J_z=pm9/2$$ as a main component due to a large negative B$$_{20}=-1.4$$K, which is the origin of the strong uniaxial anisotropy. The estimated magnetic moment, the calculated susceptibility, magnetization curve, and specific heat are in good agreement with the experimental data. The existence of a common charge distribution with CePd$$_5$$Al$$_2$$ and PrPd$$_5$$Al$$_2$$. Indicates that a localized character is important even in actinide-based iso-structural compounds as actually observed in UPd$$_5$$Al$$_2$$ and also NpPd$$_5$$Al$$_2$$, in which the valence crossover plays important role for the heavy fermion superconductivity.

Journal Articles

Considerations on phenomena scaling for BEPU

Nakamura, Hideo

Proceedings of ANS International Conference on Best Estimate Plus Uncertainties Methods (BEPU 2018) (USB Flash Drive), 8 Pages, 2018/00

no abstracts in English

JAEA Reports

Cutting operation of simulated fuel assembly heating examination by AWJ

Abe, Yuta; Nakagiri, Toshio; Watatani, Satoshi*; Maruyama, Shinichiro*

JAEA-Technology 2017-023, 46 Pages, 2017/10

JAEA-Technology-2017-023.pdf:8.01MB

This is a report on Abrasive Water Jet (AWJ) cutting work carried out on specimen, which was used for Simulated Fuel Assembly Heating Examination by Collaborative Laboratories for Advanced Decommissioning Science (CLADS) molten core behavior analysis group in February 2016. The simulated fuel assembly is composed of Zirconia for the outer crucible/simulated fuel, stainless steel for the control blade and Zircaloy (Zr) for the cladding tube/channel box. Therefore, it is necessary to cut at once substances having a wide range of fracture toughness and hardness. Moreover, it is a large specimen with an approximate size of 300 mm. In addition, epoxy resin has high stickiness, making it more difficult to cut. Considering these effects, AWJ cutting was selected. The following two points were devised, and this specimen could be cut with AWJ. If it was not possible to cut at one time like a molten portion of boride, it was repeatedly cut. By using Abrasive Suspension Jet (ASJ) system with higher cutting ability than Abrasive Injection Jet (AIJ, conventional method) system, cutting time was shortened. As a result of this work, the cutting method in Simulated Fuel Assembly Heating Examination was established. Incidentally, in the cutting operation, when the cutting ability was lost at the tip of the AWJ, a curved cut surface, which occurs when the jet flowed away from the feeding direction, could be confirmed at the center of the test body. From the next work, to improve the cutting efficiency, we propose adding a mechanism such as turning the cutting member itself for re-cutting from the exit side of the jet and appropriate traverse speed to protect cut surface.

Journal Articles

Radiation imaging system using a compact $$gamma$$-ray imager mounted on a remotely operated machine

Sato, Yuki; Kawabata, Kuniaki; Ozawa, Shingo*; Izumi, Ryo*; Kaburagi, Masaaki; Tanifuji, Yuta; Terasaka, Yuta; Miyamura, Hiroko; Kawamura, Takuma; Suzuki, Toshikazu*; et al.

IFAC-PapersOnLine, 50(1), p.1062 - 1066, 2017/07

 Times Cited Count:3 Percentile:66.08(Automation & Control Systems)

Journal Articles

Study on the distribution of boron in the in-vessel fuel debris in conditions close to Fukushima Daiichi Nuclear Power Station Unit 2

Ikeuchi, Hirotomo; Piluso, P.*; Fouquart, P.*; Excoffier, E.*; David, C.*; Brackx, E.*

Proceedings of 8th European Review Meeting on Severe Accident Research (ERMSAR 2017) (Internet), 12 Pages, 2017/05

no abstracts in English

41 (Records 1-20 displayed on this page)